Publications

Articles, Thèses, Brevets, Séminaires, Livres, Notes techniques

Recherche

Article de conférence

Drowsiness Detection Using Joint EEG-ECG Data With Deep Learning

Auteurs : Geoffroy Guillaume, Chaari Lotfi, Tourneret Jean-Yves et Wendt Herwig

In Proc. 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, August 23-27, 2021.

Télécharger le document

Drowsiness detection is still an open issue, especially when detection is based on physiological signals. In this sense, light non-invasive modalities such as electroencephalography (EEG) are usually considered. EEG data provides informations about the physiological brain state, directly linked to the drowsy state. Electrocardigrams (ECG) signals can also be considered to involve informations related to the heart state. In this study, we propose a method for drowsiness detection using joint EEG and ECG data. The proposed method is based on a deep learning architecture involving convolutional neural networks (CNN) and recurrent neural networks (RNN). High efficiency level is obtained with accuracy scores up to 97% on validation set. We also demonstrate that a modification of the proposed architecture by adding autoencoders helps to compensate the performance drop when analysing subjects whose data is not presented during the learning step.

Lire la suite

Traitement du signal et des images / Autre

Bayesian Estimation for the Parameters of the Bivariate Multifractal Spectrum

Auteurs : Leon Arencibia Lorena, Wendt Herwig, Tourneret Jean-Yves et Abry Patrice

In Proc. 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, August 23-27, 2021.

Télécharger le document

Multifractal analysis is a reference tool for the analysis of data based on local regularity and has proven useful in an increasing number of applications involving univariate data (scalar valued time series or single channel images). Recently the theoretical ground for a multivariate multifractal analysis has been explored, showing its potential for capturing and quantifying transient higher-order dependence beyond correlation among collections of data. Yet, the accurate estimation of the parameters associated with these multivariate multifractal models is challenging. Building on these first formulations of multivariate multifractal analysis, the present work proposes a Bayesian model and studies an estimation framework for the parameters of a quadratic model for the joint multifractal spectrum of bivariate time series. The approach relies on a novel joint Gaussian model for the logarithm of wavelet leaders and leverages on a Whittle approximation and data augmentation for the matrix-valued parameters of interest. Monte Carlo simulations demonstrate the benefits of the method with respect to previous formulations. In particular, we obtain significant performance improvements at only moderately larger computational cost, for large ranges of sample size and multifractal parameter values.

Lire la suite

Traitement du signal et des images / Autre

Article de journal

Anomaly Detection and Classification in Multispectral Time Series based on Hidden Markov Models

Auteurs : León-López Kareth, Mouret Florian, Arguello Fuentes Henry et Tourneret Jean-Yves

IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-11, August, 2021.

Télécharger le document

Monitoring agriculture from satellite remote sensing data, such as multispectral images, has become a powerful tool since it has demonstrated a great potential for providing timely and accurate knowledge of crops. Detecting anomalies in time series of multispectral remote sensing images for crop monitoring is generally performed using a large sample of historical data at a pixel level. Conversely, this article presents a framework for anomaly detection (AD), localization, and classification that exploits the temporal information contained in a given season at a parcel level to detect and localize outliers using hidden Markov models (HMMs). Specifically, the AD part is based on the learning of HMM parameters associated with unlabeled normal data that are used in a second step to detect abnormal crop parcels referred to as anomalies. The learned HMM can also be used in time segments to temporally localize the anomalies affecting the crop parcels. The detected and localized anomalies are finally classified using a supervised classifier, e.g., based on support vector machines. The proposed framework is applicable to images partially covered by clouds and can handle a set of crop parcels acquired in the same season bypassing problems due to crop rotations. Numerical experiments are conducted on synthetic and real data, where the real data correspond to vegetation indices extracted from several multitemporal Sentinel-2 images of rapeseed crops. The proposed approach is compared to standard AD methods yielding better detection rates with the advantage of allowing anomalies to be localized and characterized.

Lire la suite

Traitement du signal et des images / Observation de la Terre

Article de conférence

Sparse Representations and Dictionary Learning : from Image Fusion to Motion Estimation

Auteurs : Tourneret Jean-Yves, Basarab Adrian, Ouzir Nora et Wei Qi

In Proc. International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, July 12-16, 2021.

Télécharger le document

The first part of this paper presents some works conducted with Jose Bioucas Dias for fusing high spectral resolution images (such as hyperspectral images) and high spatial resolution images (such as panchromatic or multispectral images) in order to build images with improved spectral and spatial resolutions. These works are related to Bayesian fusion strategies exploiting prior information about the target image to be recovered constructed by dictionary learning. Interestingly, these Bayesian image fusion methods can be adapted with limited changes to motion estimation in pairs or sequences of images. The second part of this paper explains how the work of Jose Bioucas Dias has been a source of inspiration for developing new Bayesian motion estimation methods for ultrasound images.

Lire la suite

Traitement du signal et des images / Autre

Article de journal

Automated Machine Health Monitoring at an Expert Level

Auteurs : Martin Nadine, Mailhes Corinne et Laval Xavier

Special issue of Acoustics Australia on Machine Condition Monitoring, vol. 49, pp. 185-197, June, 2021.

Télécharger le document

Machine health condition monitoring is evidently a crucial challenge nowadays. Unscheduled breakdowns increase operating costs due to repairs and production losses. Scheduled maintenance implies taking the risk of replacing fully operational components. Human expertise is a solution for an outstanding expertise but at a high cost and for a limited quantity of data only, the analysis being time-consuming. Industry 4.0 and digital factory offer many alternatives to human monitoring. Time, cost and skills are the real stakes. The key point is how to automate each part of the process knowing that each one is valuable. Leaving aside scheduled maintenance, this paper copes with condition-based preventive maintenance and focuses on one fundamental step : the signal processing. After a brief overview of this specific area in which numerous technologies already exist, this paper argues for an automated signal processing at an expert level. The objective is to monitor a system over days, weeks, or years with as great accuracy as a human expert, and even better in regard to data investigation and analysis efficiency. After a data validation step most often ignored, any multimodal signal (vibration, current, acoustic, ...) is processed over its entire frequency band in view of identifying all harmonic families and their sidebands. Sophisticated processing such as filtering and demodulation creates relevant features describing the fine complex structures of each spectrum. A time-frequency feature tracking constructs trends over time to not only detect a failure but also to characterize and localize it. Such an automated expert-level processing is a way to raise alarms with a reduced false alarm probability.

Lire la suite

Traitement du signal et des images / Autre

Article de conférence

SmartCoop Algorithm : Improving Smartphone Position Accuracy and Reliability via Collaborative Positioning

Auteurs : Verheyde Thomas, Blais Antoine, Macabiau Christophe et Marmet François-Xavier

In Proc. International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, June 1-3, 2021.

Télécharger le document

In recent years, our society is preparing for a paradigm shift toward the hyper-connectivity of urban areas. This highly anticipated rise of connected smart city centers is led by the development of low-cost connected smartphone devices owned by each one of us. In this context, the demand for low-cost, high-precision localization solutions is driven by the development of novel autonomous systems. The creation of a collaborative based network will take advantage of the large number of connected devices in today's city center. This paper validates the positioning performance increase of Android low-cost smartphones device present in a collaborative network. The assessment will be made on both simulated and collected smartphone's GNSS raw data measurements. We propose a collaborative method based on the estimation of distances between network mobile users used in a SMARTphone COOPerative Positioning algorithm (SmartCoop) . Previous analysis made on smartphone data allow us to generate simulated data for experimenting our cooperative engine in nominal conditions. The evaluation and analysis of this innovative method shows a significant increase of accuracy and reliability of smartphones positioning capabilities. Position accuracy improves by more than 3m, in average, for all smartphones within the collaborative network.

Lire la suite

Communications numériques / Localisation et navigation

Article de journal

Insights on the Estimation Performance of GNSS-R Coherent and Noncoherent Processing Schemes

Auteurs : Ortega Espluga Lorenzo, Vilà-Valls Jordi et Chaumette Eric

IEEE Geoscience and Remote Sensing Letters, vol. 19, Art no. 8012205, pp. 1-5, 2022.

Télécharger le document

Parameter estimation is a problem of interest when designing new remote sensing instruments, and the corresponding lower performance bounds are a key tool to assess the performance of new estimators. In global navigation satellite systems reflectometry (GNSS-R), a noncoherent averaging is applied to reduce speckle and thermal noise, and subsequently the parameters of interest are estimated from the resulting waveform. This approach has been long regarded as suboptimal with respect to the optimal coherent one, which is true in terms of detection capabilities, but no analysis exists on the corresponding parameter estimation performance exploiting GNSS signals. First, we show that for certain signal models, both coherent and noncoherent Cramér-Rao bounds are equivalent, and therefore, any maximum likelihood estimation coherent/noncoherent combination scheme is efficient (optimal) at high signal-to-noise ratios. This is validated for an illustrative GNSS-R estimation problem. In addition, it is shown that considering the joint delay/Doppler/phase estimation problem, the noncoherent performance for the delay is still optimal, which is of practical importance for instance in altimetry applications.

Lire la suite

Traitement du signal et des images / Localisation et navigation et Systèmes spatiaux de communication

On Nested Property of Root-LDPC Codes

Auteurs : Ortega Espluga Lorenzo et Poulliat Charly

IEEE Wireless Communications Letters, vol. 10, issue 5, pp. 1005-1009, May 2021.

Télécharger le document

We investigate on binary Protograph Root-LDPC codes that can embed an interesting property, called nested property. This property refers to the ability for a coding scheme to achieve full diversity and equal coding gain for any number of received coded blocks and for any configuration of the received code blocks. One can take advantage of this property for “carousel”-type transmissions broadcasting cyclically coded information. For regular Root-LDPC codes, we show that these codes inherently have both properties over the nonergodic block fading channel and when message passing decoding is used. Then, we show that irregular Root-LDPC structures could not provide equal coding gain except if explicit design rules are enforced to ensure that the nested property is fulfilled when designing irregular Root-LDPC codes. Simulation results show that designed nested Root-LDPC codes achieve good performance and full diversity for coding rates R=1/2, R=1/3 and R=1/4.

Lire la suite

Communications numériques / Localisation et navigation et Systèmes spatiaux de communication

Article de conférence

Multivariate Anomaly Detection in Discrete and Continuous Telemetry Signals Using a Sparse Decomposition Into a Dictionary,

Auteurs : Lambert Pierre-Baptiste, Pilastre Barbara, Tourneret Jean-Yves, Boussouf Loïc, d'Escrivan Stéphane et Delande Pauline

Proc. of Space Operations (SpaceOps), Cape Town, South Africa, May 3-5, 2021.

This paper presents some research works based on the PhD thesis of B. Pilastre (B. Pilastre, Estimation Parcimonieuse et Apprentissage de Dictionnaires pour la détection d’Anomalies Multivariées dans des Données Mixtes de Télémesure Satellite, PhD Thesis of the university of Toulouse, Nov. 6, 2020.), supported by CNES and Airbus Defence & Space, on a new Anomaly Detection algorithm based on a sparse decomposition into a DICTionary (ADDICT). The proposed method addresses two main challenges related to anomaly detection for satellite telemetry parameters, namely the multivariate processing of these parameters and the mixed continuous and discrete nature of the data. Different variations of the ADDICT algorithm, referred to as C-ADDICT and W-ADDICT, have been investigated differing by the data decomposition term defined using a linear combination of the atoms or its convolutional equivalent. The resulting ADDICT, C-ADDICT and W-ADDICT algorithms have been evaluated on a small representative dataset containing satellite anomalies with an available ground-truth and have shown competitive results with respect to the state-of-the-art. They have also been tested on industrial use-cases, especially regarding online processing (i.e., sequential learning taking into account the feedback of users). The results of these tests are presented in this paper.

Lire la suite

Traitement du signal et des images / Systèmes spatiaux de communication

Thèse de Doctorat

Systèmes et Algorithmes de Traitement d'Images pour l'Estimation de Déformées de Structures d'Avion en Vol

Auteur : Demoulin Quentin

Defended on April 30, 2021.

Télécharger le document

Contexte industriel Quels seront les moyens de transport aérien de demain ? Quelle technologie de rupture permettra de réaliser l’avion du futur ? L’industrie aérospatiale actuelle est confrontée à l’énorme défi de rendre ses véhicules plus durables, c’est-à-dire de créer des avions plus propres, plus écologiques et plus silencieux. Afin de relever ce défi, un important projet de développement d’Airbus consiste à concevoir des ailes plus intelligentes, dont les formes peuvent être optimisées pour les conditions de vol à la manière des oiseaux, ou à utiliser de nouveaux matériaux qui modifient les propriétés physiques de l’avion. Dans le cadre de la qualification et de la certification des avions, de nouveaux instruments doivent donc être proposés pour permettre ces évolutions technologiques. En particulier, de nouveaux moyens de mesure ou d’estimation des déformations des ailes doivent être proposés, permettant une meilleure compréhension des capacités des ailes et de leur comportement aérodynamique, grâce à une reconstruction 3D dynamique et dense en vol. En outre, ces recherches doivent être intégrées dans le plan de développement du centre d’essais en vol, dont les axes sont : • la réduction du cycle de certification des avions d’essai par l’accélération du développement et de l’installation des équipements, • la réduction de l’empreinte des instruments de mesure sur l’avion et de leurs contraintes opérationnelles, • la réduction des coûts d’installation des instruments d’essai en vol. Objectifs et enjeux Dans ce contexte industriel, l’objectif de cette thèse est de développer une nouvelle méthode de mesure de déformations des ailes répondant aux spécifications du centre d’essais en vol d’Airbus et de démontrer la faisabilité d’un système industriel. Dans un premier temps, le système proposé doit être capable de mesurer la flexion (élévation de l’aile) avec une incertitude inférieure à 10cm au bout de l’aile, pour une aile d’environ 30m de long, 10m de large, et capable de se déplacer dans un volume de 10m de haut. Deuxièmement, ce système devrait pouvoir effectuer des mesures pendant toute la durée d’un vol, c’est-à-dire jusqu’à 4 heures d’enregistrement, permettant l’acquisition de phénomènes dynamiques, soit une fréquence d’acquisition de l’ordre de 1 à 30Hz. Enfin, pour être intégré dans l’environnement d’essai en vol et suivre la ligne directrice du domaine, le système doit être rapide et facile à installer tout en restant aussi peu intrusif que possible, à savoir qu’il ne doit pas perturber ni le fonctionnement de l’avion et des autres essais ni l’équipage. Parallèlement, le monde des essais en 1 vol présente ses propres défis. La méthode proposée doit fonctionner dans un environnement non contrôlé, avec des variations de luminosité, d’éventuelles réflexions et ombres, des vibrations et des déformations de l’ensemble de l’avion. Il est à noter que les capteurs utilisés pour acquérir les mesures ne peuvent pas être installés n’importe où, et sont contraints d’être positionnés sur les hublots de l’avion.

Lire la suite

Traitement du signal et des images / Systèmes de communication aéronautiques

ADRESSE

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique