Publications

Articles, Thèses, Brevets, Séminaires, Livres, Notes techniques

Recherche

Article de conférence

Estimation OF Instrument Spectral Response Functions using Sparse Representations in a Dictionary

Auteurs : El Haouari Jihanne, Gaucel Jean-Michel, Pittet Christelle, Tourneret Jean-Yves et Wendt Herwig

In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, July 7-12, 2024.

Télécharger le document

Understanding greenhouse gas fluxes at the Earth’s surface is becoming crucial in the context of climate change. The aim of the CNES/UKSA MicroCarb mission is therefore to map, on a planetary scale, the sources and sinks of carbon, the main greenhouse gas in the atmosphere. To do this, a spectrometer will be sent in space to acquire spectra in 4 narrow bands around wavelengths associated with O2 and CO2. However, measurement errors can occur due to the instrument used, and induce errors in the resulting trace gas concentrations. It is therefore crucial to estimate the spectral response of the instrument as accurately as possible. This paper investigates a new estimation method for this spectral response that uses a sparse representation in a dictionary of appropriate basis functions. This sparse representation is performed using the LASSO and Orthogonal Matching Pursuit (OMP) algorithms. Simulations conducted on data mimicking observations resulting from the MicroCarb instrument allow the performance of this method to be appreciated.

Lire la suite

Traitement du signal et des images / Observation de la Terre

Article de journal

Robust error‑state Kalman‑type filters for attitude estimation

Auteurs : Bellés Andrea, Medina Daniel, Chauchat Paul, Labsir Samy et Vilà-Valls Jordi

EURASIP Journal on Advances in Signal Processing, vol. 2024, art. 75, July, 2024.

Télécharger le document

State estimation techniques appear in a plethora of engineering fields, in particular for the attitude estimation application of interest in this contribution. A number of filters have been devised for this problem, in particular Kalman-type ones, but in their standard form they are known to be fragile against outliers. In this work, we focus on error-state filters, designed for states living on a manifold, here unit-norm quaternions. We propose extensions based on robust statistics, leading to two robust M-type filters able to tackle outliers either in the measurements, in the system dynamics or in both cases. The performance and robustness of these filters is explored in a numerical experiment. We first assess the outlier ratio that they manage to mitigate, and second the type of dynamics outliers that they can detect, showing that the filter performance depends on the measurements’ properties.

Lire la suite

Traitement du signal et des images / Localisation et navigation

Article de conférence

On Time-Delay Estimation Accuracy Limit Under Phase Uncertainty

Auteurs : Bernabeu Frias Joan Miguel, Ortega Espluga Lorenzo, Blais Antoine, Gregoire Yoan et Chaumette Eric

In Proc. 27th International Conference on Information Fusion, Venise, Italia, July 7-11, 2024.

Télécharger le document

Accurately determining signal time-delay is crucial across various domains, such as localization and communication ystems. Understanding the achievable optimal estimation peformance of such technologies, especially during design phases, is essential for benchmarking purposes. One common approach is to derive bounds like the Cramer-Rao Bound (CRB), which directly reflects the minimum achievable estimation error for unbiased estimators. Different studies vary in their approach to deal with the degree of misalignment in the global phase originating from both the transmitter and the receiver in a single input, single output (SISO) link during time-delay estimation assessment. While some treat this phase term as unknown, others assume ideal calibration and compensation. As an alternative to these two opposing approaches, this study adopts a more balanced approach by considering that such a phase can be estimated with a defined uncertainty, a measure that could be mplemented in many practical applications. The primary contribution provided lies in the derivation of a closed-form CRB expression for this alternative signal model, which, as observed, exhibits an asymptotic behavior transitioning between the results observed in previous studies, influenced by the uncertainty assumed for the mentioned phase term.

Lire la suite

Traitement du signal et des images / Localisation et navigation

A Statistical Method for Near Real-Time Deforestation Monitoring using Time Series of Sentinel-1 Images

Auteurs : Bottani Marta, Ferro-Famil Laurent, Mermoz Stéphane, Doblas Juan, Bouvet Alexandre et Koleck Thierry

In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, July 7-12, 2024.

Télécharger le document

In this paper, we propose an unsupervised statistical approach for near real-time monitoring of forest loss, leveraging Bayesian inference. We address the identification of forest loss as a change-point detection problem within non-filtered Sentinel-1 single polarization time series data. Each new observation contributes to the probability of deforestation occurrence, utilizing prior knowledge and a data model. Our method offers the advantage of detecting small-scale deforestation without resorting to spatial filtering techniques, thus preserving the native spatial resolution of the Sentinel-1 measurements. To assess its effectiveness, we conducted comparative evaluations against existing operational deforestation monitoring systems. The validation campaign revealed that our method exhibits enhanced detection performance with low false alarm rates with respect to existing systems across diverse landscapes, including dense forest regions such as the Brazilian Amazon, as well as seasonality-dependent areas like the Cerrado, which is strongly under-monitored by existing technology. This robustness stems from the sequential adaptive process inherent in our approach, which enables effective monitoring even in the presence of backscatter variations.

Lire la suite

Traitement du signal et des images / Observation de la Terre

Séminaire

Robust Multi Sensor Fusion for State Estimation

Auteurs : Medina Daniel, Vilà-Valls Jordi, Chauchat Paul, Chaumette Eric, Labsir Samy, Closas Pau, Li Haoqing et Bellés Andrea

Seminar of TeSA, Toulouse, July 5, 2024.

Télécharger le document

Lire la suite

Traitement du signal et des images / Localisation et navigation

Article de conférence

Novel Bayesian Approach Based on Infinite State Markov Chains for Prompt Detection of Forest Loss Using Sentinel-1 Time Series

Auteurs : Bottani Marta, Ferro-Famil Laurent, Doblas Juan, Mermoz Stéphane, Bouvet Alexandre et Koleck Thierry

In Proc. ESA Dragon Symposium, Lisbon, Portugal, June 24-28, 2024.

Télécharger le document

Forest loss is a global issue that requires real-time surveillance to prevent further vegetation loss. This study presents an unsupervised SAR-based technique that leverages Bayesian inference and infinite state Markov chains to identify forest loss, overcoming the limitations of current methods. Our approach significantly improves accuracy and reduces false alarm rates compared to existing Near Real-Time (NRT) forest loss monitoring systems and enlarges the conditions of operability.

Lire la suite

Traitement du signal et des images / Observation de la Terre

Exploiting Redundant Measurements for Time Scale Generation in a Swarm of Nanosatellites

Auteurs : Mc Phee Hamish Scott, Tourneret Jean-Yves, Valat David, Delporte Jérôme, Gregoire Yoan et Paimblanc Philippe

In Proc. European Frequency and Time Forum (EFTF), Neufchâtel, Switzerland, June 25-27, 2024.

Télécharger le document

The computation of a common reference time for a swarm of nanosatellites is restricted by the quality and availability of the timing measurements made with inter-satellite links. The presence of anomalies or absence of communication links is demonstrated to harm the stability of the time scale. The Least Squares (LS) estimator is introduced as a method of preprocessing measurement noise by using all available clock comparisons in the swarm. This estimator also provides filtered measurements when inter-satellite links are missing as long as each satellite maintains at least one link with another. Anomaly detection and removing corrupted satellite links are shown to be compatible with the LS estimator to mitigate the impact of anomalous measurements. When a satellite becomes completely isolated for some period of time, a correction at the beginning and the end of the isolation period are both detailed. The correction is simple and just requires resetting the weights of missing clocks and clocks being reintroduced. Continuity is shown to be maintained when a large portion of clocks are removed and later reintroduced at the same time.

Lire la suite

Traitement du signal et des images / Localisation et navigation

Exploiting Redundant Measurements for Time Scale Generation in a Swarm of Nanosatellites

Auteurs : Mc Phee Hamish Scott, Tourneret Jean-Yves, Valat David, Delporte Jérôme, Gregoire Yoan et Paimblanc Philippe

In Proc. European Frequency and Time Forum (EFTF), Neufchâtel, Switzerland, June 25-27, 2024.

Télécharger le document

Lire la suite

Traitement du signal et des images / Localisation et navigation

Séminaire

High Precision Satellite-based Navigation

Auteur : Medina Daniel

Seminar of TeSA, Toulouse, June 14, 2024.

Télécharger le document

Lire la suite

Traitement du signal et des images / Localisation et navigation

Article de conférence

Division Réseau Equitable dans les Essaims de Nanosatellites

Auteurs : Akopyan Evelyne, Dhaou Riadh, Lochin Emmanuel, Pontet Bernard et Sombrin Jacques B.

In Proc. 9èmes Rencontres Francophones sur la Conception de Protocoles, l'Evaluation de Performance et l'Expérimentation des Réseaux de Communication (AlgoTel-CoRes), Saint-Briac-sur-Mer, France, May 27-31, 2024.

Télécharger le document

Nous proposons de partitionner l’architecture d’un réseau ad-hoc mobile en plusieurs groupes, afin de re-distribuer équitablement la charge entre les membres du réseau. Notre étude porte sur un essaim de nanosatellites fonctionnant commue un télélescope spatial distribué, placé en orbite lunaire. Chaque nanosatellite de l’essaim collecte des données d’observation de l’espace, puis les échange avec les autres membres de l’essaim. Les données recueillies sont ensuite combinées localement afin de produire l’image globale observée par l’essaim. Cependant, un système fondé sur ce mode opératoire est particulièrement sensible aux pertes de paquets et aux pannes d’énergie. En effet, la transmission simultanée d’un important volume de données peut entraîner des problèmes de communication, notamment en surchargeant le canal radio ou en augmentant le risque de collisions, menant dans les deux cas à des pertes de paquets. La consommation énergétique totale de l’essaim est également proportionnelle au nombre de paquets transmis : il faut alors trouver une solution pour limiter le nombre de transmissions afin d’économiser l’énergie des nanosatellites. La principale contribution de ce papier est de proposer une approche basée sur la division équitable du réseau en plusieurs groupes de nanosatellites. Nous comparons les performances de trois algorithmes de division de graphe : Random Node Division (RND), Multiple Independent Random Walks (MIRW), et Forest Fire Division (FFD). Nos résultats montrent que MIRW obtient les meilleurs scores en termes d’équité, peu importe le nombre de groupes produit.

Lire la suite

Réseaux / Systèmes spatiaux de communication

ADRESSE

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique