Recherche
Article de conférence
Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation
In Proc. 21st International Conference on Information Fusion (FUSION), Cambridge, England, July 10-13, 2018.
Multipath remains the main source of error when using global navigation satellite systems (GNSS) in constrained environment, leading to biased measurements and thus to inaccurate estimated positions. This paper formulates the GNSS navigation problem as the resolution of an overdetermined system, which depends nonlinearly on the receiver position and linearly on the clock bias and drift, and possible biases affecting GNSS measurements. The extended Kalman filter is used to linearize the navigation problem whereas sparse estimation is considered to estimate multipath biases. We assume that only a part of the satellites are affected by multipath, i.e., that the unknown bias vector is sparse in the sense that several of its components are equal to zero. The natural way of enforcing sparsity is to introduce an `1 regularization associated with the bias vector. This leads to a least absolute shrinkage and selection operator (LASSO) problem that is solved using a reweighted-l1 algorithm. The weighting matrix of this algorithm is designed carefully as functions of the satellite carrier to noise density ratio and the satellite elevations. The smooth variations of multipath biases versus time are enforced using a regularization based on total variation. An experiment conducted on real data allows the performance of the proposed method to be appreciated.
Traitement du signal et des images / Localisation et navigation
Thèse de Doctorat
Livraison de contenus sur un réseau hybride satellite / terrestre
Defended on July 5, 1998.
The increase and reinforcement of Internet uses make necessary to improve existing networks. However, we observe strong inequalities between urban areas, well served and which concentrate the major part of investments, and rural areas, underserved and forkasen. To face this situation, users in underserved areas are moving to others Internet access, and in particular satellite Internet access. However, the latter suffer from a limitation which is the long delay induced by the propagation time between the earth and the geostationnary orbit. In this thesis, we are interresed in the simultaneous use of a terrestrial access network, characterized by a low delay and a low throughput, and a satellite access network, characterized by a high throughput and an long delay. Elsewhere, Content Delivery Networks (CDNs), consisting of a large number of cache servers, bring an answer to the increase in trafic and needs in terms of latency and throughput. However, located in core networks, cache servers stay far from end users and do not reach access networks. Thus, Internet Service Providers (ISPs) have taken an interest in deploying their own CDNs, which will be referred to as TelCo CDNs. The content delivery ideally needs the interconnection between CDN operators and TelCo CDNS, allowing the delegation of the content delivery to the TelCo CDNs. The latter are then able to optimize the content delivery on their network, for which they have a better knowledge. Thus, we will study the optimization of the contents delivery on a hybrid satellite / terrestrial network, integrated in a CDN delivery chain. We will initially focus on the description of a architecture allowing, thanks to a CDN interconnection, handling contents delivery on the hybrid network. In a second stage, we will study the value of the information provided by the CDN context in the routing on such architecture. In this framework, we will propose a routing mechanism based on contents size. Finally, we will show the superiority of our approach over the multipath transport protocol MP-TCP.
Article de conférence
Multipath Mitigation in Global Navigation Satellite Systems using a Bayesian Hierarchical Model with Bernoulli Laplacian Priors
In Proc. IEEE Worshop on Statistical Signal Processing (SSP), Freiburg Im Breisgau, Germany, June 10-13, 2018.
A new sparse estimation method was recently introduced in a previous work to correct biases due to multipath (MP) in GNSS measurements. The proposed strategy was based on the resolution of a LASSO problem constructed from the navigation equations using the reweighted-l1 method. This strategy requires to adjust the regularization parameters balancing the data fidelity term and the involved regularizations. This paper introduces a new Bayesian estimation method allowing the MP biases and the unknown model parameters and hyperparameters to be estimated directly from the GNSS measurements. The proposed method is based on BernoulliLaplacian priors, promoting sparsity of MP biases.
Traitement du signal et des images / Localisation et navigation
Article de journal
QoE enhancements on Satellite Networks through the Use of Caches
International Journal of Satellite Communications and Networking, pp. 1-13, June, 2018.
A high throughput does not necessarily translate to a good Quality of Experience, especially in a satellite context. The round trip time, for instance, also has a tremendous impact on the reactivity of applications and thus on the Quality of Experience. Content delivery networks are massively used for over‐the‐top services in terrestrial network: They reduce the load of network and the delay as they draw the content closer to the end user. In a satellite system, the content delivery network presents a good opportunity for enhancing the end users' Quality of Experience and can change the conventional use of performance‐enhancing proxies. This paper investigates the satellite as access link for home networks or a backhaul link for small cells for a 5G perspective. We analysed the impact of caching on both gateway side and satellite terminal side for 2 on‐trend services: web browsing and adaptive video streaming (dynamic adaptive streaming over HTTP). The main contribution is an evaluation of transparent caching through a satellite platform. The caching policy is out of the scope of this paper. One large part of the testbed is based on an open‐source platform, OpenSAND that emulates the satellite system. To confirm the results, some real experiments have been conducted on a commercial satellite link. As expected, the transparent caching at the satellite terminal side can increase the Quality of Experience to its upper border as long as the content is available in the cache. For the satellite gateway cache, the performances exceed the expectations. Although the application experiences the satellite delay in this case, the traversal time of different Internet service provider networks also delays the delivery of content. Then it may have a greater impact on reactivity than the satellite itself. Through careful analysis of the different results, we noticed some issues. Transparent caching is unable to cache encrypted or dynamic content. Moreover, a misuse of caching can provoke bad behaviour of dynamic adaptive streaming over HTTP mechanisms and severely decrease the Quality of Experience. We designed a solution that in addition to solving the issue, alleviates the storage space of satellite terminal caches.
Réseaux / Systèmes spatiaux de communication
Article de conférence
3GPP NB-IoT Coverage Extension using LEO Satellites
In Proc. IEEE 87th Vehicular Technology Conference (VTC-Spring), Porto, Portugal, June 3-6, 2018.
Machine-Type Communications are meeting a growing interest on the consumer market. Dedicated technologies arise to support more robust communications involving a massive number of low cost, low energy-consuming devices This paper discusses the coverage extension of a Low-Powered Wide Area Network using a Low Earth Orbit satellite constellation, benefiting from the improved performance of a recent standard. The transmission complies with the user equipment specifications standardized as NB-IoT by 3GPP in Release 13. This radio technology is an update on LTE standard with enhanced performances : the supported path loss can be 20 dB higher than with legacy LTE. This improvement makes satellite-compatible the small and energy-constrained devices. A specific unidirectional system is defined, and a link budget is derived. Also, a receiver architecture is presented, that takes into consideration satellite channel specific impairments.
Communications numériques / Systèmes spatiaux de communication
Evaluation de l’impact de caches pour de la video adaptative par satellite
In Proc. CORes, Roscoff, France, May 28-29, 2018.
Aujourd’hui, le satellite géostationnaire propose à ses clients un accès Internet haut débit (de l’ordre de 20Mbit/s). Cependant le délai induit engendre une baisse de réactivité pour la plupart des applications. En particulier, le protocole de streaming vidéo adaptatif DASH ne parvient pas à s’y adapter. Au contraire, il sous-évalue les capacités du réseau et fournit le service minimal disponible. Pour réduire les délais, le CDN rapproche les données de l’utilisateur final grâce à la mise en place de caches. Ce service a fait ses preuves pour la navigation web et le téléchargement de fichiers dans Internet. Cet article propose d’analyser l’impact du CDN pour un service de streaming vidéo adaptatif et dans un contexte satcom, deux points qui, ensemble, divergent de l’utilisation habituelle du CDN. De cette première analyse, nous pouvons différentier trois situations. La première propose des performances optimales. Dans la deuxième, le CDN n’apporte rien. Enfin, dans la dernière situation, le CDN a un impact néfaste sur les performances. Ces deux derniers cas sont induits par une mauvaise politique de mise en cache qui leurre le client DASH sur les qualités à demander. Nous résolvons ce problème par le déploiement d’un proxy transparent indiquant les qualités disponibles dans les caches.
Réseaux / Systèmes spatiaux de communication
IP Mobility in Aeronautical Communications
In Proc. 13th International Workshop on Communication Technologies for Vehicles, Madrid, Spain, May 17-18, 2018.
In the sake of modernization, aviation stakeholders decided that the future aviation network infrastructure, in particular for air-ground communica- tion systems, will move towards IP based networks. It has been referred to in the International Civil Aviation Organization as Aeronautical Telecommunication Network/Internet Protocol Suite. Due to the heterogeneous communication envi- ronment, it is necessary to support handover between different access technolo- gies and access networks. In this article, we first define the very specific aero- nautical communication environment. Our main contribution is a performance assessment of the most deployed network protocols capable of managing IP mo- bility within the aeronautical environment. We focus our analysis on the Mobile IPv6 protocol and implementation issues of a representative aeronautical network in Omnet++.
Réseaux / Systèmes de communication aéronautiques
Improving content delivery with size-aware routing in hybrid satellite / terrestrial networks
In Proc. IEEE International Conference on Communications (ICC 2018), pp. 1--6, Kansas-City, United States, May, 2018.
As Internet usages expand quickly, access networks are modernized with new technologies like fiber-optic communications. However, upgrade costs are prohibitive in sparsely populated areas, the latter turning notably towards satellite connection. Indeed, this technology allows deploying a high-throughput Internet access quickly in these regions. Nevertheless, GEO satellites induce a long delay, not experienced on terrestrial infrastructures despite their low throughput. In this paper, we consider a heterogeneous network with both a satellite and a terrestrial path. This kind of architecture is known to be difficult to operate because of the important differences between used technologies. The emerging MP-TCP transport protocol, whose design enables to aggregate disparate paths properly, brought new hopes for heterogeneous networks. However, it does not take user Quality of Experience (QoE) into account as it focuses on maximizing the links occupancy. This paper propose an intelligent path selector using the content size to maximize users QoE in heterogeneous networks. Before detailing this method, we describe the architecture able to retrieve the size of delivered contents thanks to Content Delivery Network Interconnection (CDNI). Finally, we implement a testbed to evaluate the behavior of the proposed routing method. The results show a significant improvement of the delivery performance, outperforming MP-TCP.
Réseaux / Systèmes spatiaux de communication
Brevet
PROCÉDÉ ET SYSTÈME DE TRANSMISSION DE PAQUETS DE DONNÉES À TRAVERS UN CANAL DE TRANSMISSION (RA) À ACCÈS ALÉATOIRE
n° 071277 FR RQDLV 14-05-18 YTA-LRE, May 2018.
Communications numériques / Systèmes spatiaux de communication
Article de journal
Two-Color Scheme for a Multi-Beam Satellite Return Link : Impact of Interference Coordination
IEEE Journal on Selected Areas in Communications, vol. 36, pp. 993-1003, May 2018.
The return link of broadband satellite systems has recently received more attention due to the spread of multi-beam antennas which enable spatial frequency reuse, and thus increase drastically the number of users that can potentially be served by one satellite. While interference isolation has so far been the way to go, with regular four-color frequency reuse scheme, there is a growing interest in densifying the frequency usage as is being done in cellular networks. In this paper, we address the return link radio resource allocation challenges, from spectral resource allocation to user scheduling, including modulation and coding scheme (MODCOD) selection. Our contributions highlight the potential gains of a two-color scheme and shed light on several levers to reap its benefits through interference management. We first consider the possibility to use a two-color scheme, while keeping the MODCOD selection and the scheduling local to each beam and we show that even though it yields a potential performance gain (+16%) with respect to the state of the art (SoA) (based on four colors), it is not viable due to a very high-block loss rate. Therefore, we propose a simple-yet fast and efficient-coordinated MODCOD selection process that alleviates the need of estimating interference and reduces drastically decoding failures. This coordination step offers significant gains (+58%) over the SoA, while leaving the per beam scheduler unchanged. Finally, we formulate a joint user scheduling and MODCOD selection problem across all beams and propose an offline heuristic to solve it efficiently. We obtain a 83% gain with respect to the SoA, but with higher computational complexity. Still, it confirms the great potential of coordinated scheduling.
Réseaux / Systèmes spatiaux de communication
ADRESSE
7 boulevard de la Gare
31500 Toulouse
France